
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2154
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Implementation of Simplified AES algorithm for
Wireless Sensor Nodes on FPGA

Kavan A N & Premananda B S

Abstract— A Wireless Sensor Networks (WSN) is an ad-hoc wireless network made of sensor nodes that are physically small,
communicate wirelessly among each other. When sensor nodes are used in security domains, it requires security architectures to protect
its resources. Rijndael or Advanced Encryption Standard (AES) algorithm is a well-known standard algorithm for encryption. The encryption
algorithm running on such sensor nodes have two main constraints: memory and processing speed. This paper proposes S-AES to
overcome the above two constraints and make it suitable for sensor nodes. The Zigbee CC2500 transceiver module is used as the sensor
nodes. The proposed Simplified AES encryption and decryption is coded in Verilog HDL, simulated using Xilinx ISESIM tool and
synthesized using Xilinx XST. The implementation and validation are done on Spartan 3A FPGA.

Index Terms— FPGA, S-AES, WSN, UART, Zigbee CC2500.

——————————  ——————————
1 INTRODUCTION
AES plays a significant role of a secure algorithm for data
exchanged. Two prime processes are involved: Encryption
(cipher) and Decryption (decipher). An encryption algorithm
provides Confidentiality, Authentication, Integrity and Non-
repudiation. Encryption algorithms are broadly classified as
Symmetric or Asymmetric algorithms based on the kind of
keys used.

Sensor nodes are typically battery powered, making
sensor networks highly energy constrained. Therefore, a key
challenge in a wireless sensor networks is the reduction of
energy consumption [2]. Sensor networks are becoming a cost-
effective solution to a range of applications in critical domains.
When sensor networks are used in security domains, security
becomes a strong and important requirement. These
applications should not only timely detect a potential risk, but
should also be protected from malicious attacks such as fake
messages or corrupted data [3].

 AES is a cryptographic algorithm, selected for protecting
the resources on sensor nodes. When encryption algorithm is
applied on sensor nodes, processing speed is degraded and
occupies large memory resources that make the AES
implementation not suitable for WSN [1]. For this reason, the
main focus is on the implementation of Simplified AES (S-
AES) [7] for sensor nodes to overcome the above two
constraints. S-AES algorithm is discussed in section 2.

The Zigbee CC2500 transceiver module is used as the sensor
nodes. Two transceiver modules are used for the
implementation. The CC2500 is a low-cost 2.4 GHz transceiver
designed for very low-power wireless applications. It can be
used to transmit and receive data at 9600 baud rates from any
standard CMOS/TTL source. This module is a direct
replacement for serial communication; it requires no extra
hardware and no extra coding in Half Duplex mode. The
circuit is intended for the 2400-2483.5 MHz ISM and Short
Range Device (SRD) frequency band.

This paper is organized as follows: Proposed S-AES
Algorithm, proposed block diagram, Zigbee CC2500
interfacing, Results and conclusion.

2 PROPOSED S-AES ALGORITHM
The structure of S-AES is exactly same as AES. It consists of
encryption and decryption process. The differences are in the
key size (16 bits), the block size (16 bits) and number of rounds
is 2 in each stages. S-AES targets optimization in S-Box to 4x4
instead of 16x16 as in AES [7] to reduce memory consumption
and number of rounds is reduced to 2 in each stage, to
increase the processing speed. The encryption and decryption
process of S-AES shown in fig. 1. is discussed below.

2.1 Encryption process

Encryption process converts Plaintext into Ciphertext. It
consists of Initial round, Rounds of transformations, Final
round and KeyExpansion process. Initial round consists of
AddRound key. Round transformations consists of
Subnibbles, ShiftRow, MixColumn and AddRound key.
Final round consists of Subnibbles, ShiftRow and
AddRoundKey. The KeyExpansion process is same for
both encryption and decryption.

————————————————

• Kavan A N, pursuing M.Tech. in Digital Communication Engineering,
Department of Telecommunication Engineering, R. V. College of Engineering,
Bangalore, India. E-mail: kavangowda31@gmail.com

• Mr. Premananda B S, Assistant Professor, Department of Telecommunication
Engineering, R. V. College of Engineering, Bangalore, India E-mail:
premanandabs@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2155
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

.
Fig. 1. S-AES Encryption and decryption process

The 16-bit Plaintext and 16-bit key are taken as the inputs for
S-AES, involves following steps which are explained briefly.

AddRoundKey: Instead of dividing the block into a four by
four array of bytes, S-AES divides it into two by two array of
“nibbles”, which are four bits long. This is called the state
array shown in the fig. 2. Each nibble of the state is bitwise
XORed with the key which is arranged in the same manner.

Fig. 2. State array.

Subnibbles: In this, an S-Box shown in Table 1 is used to
translate each nibble of state array into a new nibble.

Table 1

S-AES S-Box

ShiftRow: This step is same as that of standard AES. The first
Row is unchanged and the second row is cyclically shifted
once shown in fig. 3.

Fig. 3. Shift row transformation

MixColumn: After shifting the rows, mix the columns. Each
column is multiplied by the matrix given below. The
Mixcolumn transformation is shown in fig. 4.

�1 4
4 1�

Fig. 4. MixColumn transformation

KeyExpansion: KeyExpansion is done very similarly to AES.
The four nibbles in the key are grouped into two 8-bit
“words”, which will be expanded into 6 words.

The Generator function (g) is very similar to AES, first
rotating the nibbles and then putting them through the S-
Boxes. The main difference is that the round constant is
produced using xj+2, where j is the number of the round of
expansion. For first time expanding the key, use a round
constant of x3 = 1000 for the first nibble and 0000 for the second
nibble. For second time, use x4 = 0011 for the first nibble and
0000 for the second nibble.

2.2 Decryption Process

Decryption process in fig. 1 converts Ciphertext into Plaintext.
It consists of Initial round, Rounds of transformations and
Final round. Initial round consists of AddRound key. Rounds
of transformation consist of InvShiftRow, InvSubnibbles,
AddRound key and InvMixColumn. In final round,
InvMixColumn step is omitted.

AddRoundKey: Ciphertext which is obtained during the
encryption process is taken as the input for decryption
process. This Ciphertext is bitwise XORed with the Subkey
which is obtained from KeyExpansion during encryption.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2156
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

InvShiftRow: It is the inverse of the ShiftRow transformation.
The first Row is unchanged and the second row is cyclically
right shifted once.

InvSubnibbles: It is the inverse of the Subnibbles
transformation, in which the inverse S- box is applied to each
nibble of the State. The inverse S-box is presented in Table 2.

Table 2
S-AES Inv S-Box

InvMixColumn: In this step each column is multiplied by the
matrix given as

�9 2
2 9�

Table 3 shows the major differences between Existing AES and
Simplified AES

Table 3
Differences between AES and S-AES

3 PROPOSED BLOCK DIAGRAM
The conceptual block diagram is shown in the fig. 5. The
Zigbee CC2500 transceiver device is used as the sensor node.
The sensor monitoring system is used to monitor the sensor
nodes. The personal computer (PC) is used as the monitoring
system. The 16-bit plaintext and 16-bit key are passes through
Zigbee devices connected to the PC. The data are received by
other Zigbee device connected to the FPGA which is shown in
the fig. 5. The software called TMFT v2.6 is used in the
monitoring system to transmit and receive the data.

The data received undergoes encryption process in S-AES
encryption/decryption core. The encrypted data is passed to

the UART Tx/Zigbee through which it is passed to the
monitoring system. In UART protocol, UART Tx/Rx do not
share common clock signal. For data reception/transmission,
both Tx and Rx should be synchronize to each other. So, the
Baud rate generator is used to generate the baud rate which is
commonly shared by UART Tx/Rx.

Fig. 5. Conceptual Block diagram

4 ZIGBEE CC2500 INTERFACING
The Zigbee CC2500 interfacing is based on the UART
interfacing. The UART interfacing is necessary for serial
communication. For serial communication, the transmitter and
receiver of UART must be synchronous to each other, can be
achieved by Baud-rate generator. UART interfacing is mainly
depends on functional description of UART receiver,
transmitter and Baud rate generator. The Zigbee CC2500
device consists of serial port (DB9 connector) which can be
directly connected to any serial port (DB 9). One Zigbee device
is connected to the serial port of FPGA and other Zigbee is
connected to the PC. Since PC doesn’t consist of serial port,
USB to serial connector is used for the connection. The
connections are shown in the fig. 6.

Fig. 6. Hardware setup

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2157
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5 RESULTS AND DISCUSSION

5.1 Simulation results for Encryption process

The Simulation results for encryption process is shown in fig.
7 where the 16-bit Plaintext is represented as
state[15:0]=0110111101101011 and 16-bit key is represented as
key[15:0] =1010011100111011. The output of round 1 is
out1[15:0]=1111000010000101 and final round output is
denoted as out[15:0]= 0000011100111000 which is the
Ciphertext.

Fig. 7. Simulation results for Encryption process

5.2 Simulation results for decryption process

The simulation results for decryption process is shown in the
fig. 8 where state [15:0]=0000011100111000 is the Ciphertext
obtained from the encryption process and
Key1[15:0]=0111011001010001 derived from KeyExpansion
process are represented as inputs. The inputs undergoes
decryption process to give back original Plaintext as
out1[15:0]=0110111101101011.

Fig. 8. Simulation result for Decryption process

5.3 Synthesis result of S-AES

A summary of synthesis results is shown in Table 4 where the
area requirements (in slices) and the maximum work
frequency are provided. All results are extracted after place
and route with the Xilinx ISE Design Suite v13.2 on xc3s700-
5fg484 Spartan-3A platform with speed grade −5. The reason
for using Spartan 3A FPGA is Zigbee Interfacing will not
supported by lower version FPGA devices like Spartan 3 and
3E. From Table 4, it is noted that the S-AES is utilizing 3% of
available slices, 1% of flip flops, 3% of LUTs, 3% of bonded
IOBs and 8% of GCLKs on target FPGA platform.

Table 4
Device utilization summary of S-AES.

5.4 Comparison of S-AES with other Cryptographic
algorithms

Table 5 shows the performance comparison of S-AES
implementation with other Cryptographic algorithms AES in
different platforms. The experimental results shows S-AES
achieve better performance with smaller area requirement
when compared to AES and humming bird cryptographic
algorithms.

Table 5
Performance comparison of Cryptographic algorithms

5.5 Hardware Implementation Results

The implementation results are discussed in the following
steps:

Step 1: After initializing process shown in fig. 6, the encrypted
and decrypted code is configured into the FPGA. For data
transmission/reception, 16-bit input Plaintext “6F6B” or
“0110111101101011’and 16-bit key “A73B” or

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2158
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

“1010011100111011” is passed through hyper terminal shown
in fig. 9. The LSB bits are transmitted or received first followed
by the MSB bits.

Step 2: The Plaintext and key are transmitted through Zigbee
device (PC side) and is received through other Zigbee device
(FPGA side). The encryption process will be performed by
Spartan 3A FPGA. Then the encrypted data will be
transmitted and received back through Zigbee which is
displayed on terminal window shown in fig. 10.

Fig. 9. Transmitting Plaintext and key in terminal window

Fig. 10. Receiving Ciphertext “0738” in terminal window

Step 3: The key along with encrypted data “3807” is
transmitted for decryption process through hyper terminal
from one Zigbee device (PC side) and received by another
Zigbee (FPGA side). Then, decryption process will performed
by Spartan 3A. The decrypted data is received back through
Zigbee transceiver devices. The recovered Plaintext is
displayed on terminal window shown in fig. 11.

Fig. 11. Transmitting Ciphertext “0738” and receiving original Plaintext
“6B6F” in terminal window

6 CONCLUSION
The S-AES encryption/decryption implementation is done on
Spartan-3A FPGA where ciphertext is transferred from one
Zigbee (FPGA side) and receiving from other Zigbee (PC side).
The original plaintext is also retrieved back through same
Zigbee modules. The S-AES process is utilizing 219 out of 5888
Slices (3%), 149 out of 11776 (1%) Flip flops and 390 out of
11776 LUTs (3%) for encrypting/decrypting 16-bit Plaintext
and 16-bit Key. The proposed S-AES is utilizing 2 clock cycles.
Compared to other FPGA implementations of cryptographic
algorithm such as AES and Hummingbird, S-AES has better
processing speed with smaller area requirement.
Consequently, S-AES can be considered as an ideal
Cryptographic algorithm for resource-constrained
environment such as WSN, smart cards, ID cards, mobile
phones and routers etc. When encryption algorithm is needed
for high memory embedded processors, then S-AES has to
undergo Cryptanalysis.

7 ACKNOWLEDGMENT

I deeply express my sincere gratitude to my guide Mr.
Premananda B S, Assistant professor, Department of
Telecommunication Engineering, RVCE, Bengaluru for his
valuable guidance, continuous encouragement and assistance
for this project.

REFERENCES

[1] Andrea Vitaletti and La Sapienza, “Rijndael for sensor
networks: is speed the main issue” Electronic Notes in Theoretical
Computer Science (ENTCS), vol. 171, April 2007,
DOI:10.1016/j.entcs.2006.11.010, pp. 71-81.

[2] Yee Wei Law, Jeroen Doumen and Pieter Hartel “Benchmarking
Block Ciphers for Wireless Sensor Networks” in the proceedings
of International conference on Mobile Ad-hoc and Sensor Systems, 25-
27 Oct. 2004, DOI: 10.1109/ MAHSS.2004.1392185, pp. 447-456.

IJSER

http://www.ijser.org/
http://dx.doi.org/10.1109/MAHSS.2004.1392185

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2159
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[3] Jing Deng, Richard Han and Shivakant Mishra “A Performance
Evaluation of Intrusion Tolerant Routing in Wireless Sensor
Networks” in the proceedings of international conference on
dependable systems and networks, DOI: 10.1109/
ICSENS.2009.5398313, pp. 585-590.

[4] Luanlan, “The AES Encryption and Decryption realization
based on FPGA”, in the proceedings of Seventh International
Conference on Computational Intelligence and Security, 3-4 Dec.
2012, DOI: 10.1109/cis.2012.138, pp. 603-607.

[5] Ashwini M. Deshpande, Mangesh S. Deshpande and Devendra
N. Kayatanavar, “FPGA Implementation of AES Encryption and
Decryption” in the proceedings of International conference on
control, automation, communication and energy conservation, 4-6
Jun. 2009, pp. 1-6.

[6] Suhas Manangi, Parul Chaurasia and Mahendra Pratap Singh,
“Simplified AES for Low Memory Embedded Processors” in the
proceedings of global journal of computer science and technology, vol.
10, Issue 14, Nov. 2010, pp. 7-11.

[7] Ai-Wen Luo, Qing-Ming Yi and Min Shi, “Design and
Implementation of Area optimized AES Based on FPGA” in the
proceedings of International conference on Business management and
Electronic Information (BMEI), May. 2011, vol. 1, DOI:
10.1109ICBMEI.2011.5917092, pp. 743-746.

[8] Shuenn-Shyang Wang and Wan-Sheng Ni, “An Efficient FPGA
Implementation of Advanced Encryption Standard Algorithm”
in the proceedings of 2004 international symposium on circuits and
systems, 23-24 May. 2004, vol. 2, DOI:
10.1109ISCAS.2004.1329342, pp. 597-600.

[9] Yang Jun, Ding Jun, Li Na and Guo Yixiong, “FPGA-based
design and implementation of reduced AES algorithm” in the
proceedings of International conference on challenge in environmental
science and computer engineering, 6-7 Mar. 2012, vol. 2,
DOI:10.1109 /CESEC.2012, pp. 67-70.

[10] Xinxin Fan, Guang Gong, Ken Lauffenburger and Troy Hicks,
“FPGA Implementation of the Hummingbird Cryptographic
Algorithm” in the proceedings of IEEE International Symposium on
Hardware-Oriented Security and Trust, ISBN: 978-4244-7812-5/10,
pp. 48-51.

[11] William Stallings, “Cryptography and network security” 5th
edition, Springer publications.

IJSER

http://www.ijser.org/

	1 Introduction
	Decryption process in fig. 1 converts Ciphertext into Plaintext. It consists of Initial round, Rounds of transformations and Final round. Initial round consists of AddRound key. Rounds of transformation consist of InvShiftRow, InvSubnibbles, AddRound ...
	AddRoundKey: Ciphertext which is obtained during the encryption process is taken as the input for decryption process. This Ciphertext is bitwise XORed with the Subkey which is obtained from KeyExpansion during encryption.
	InvShiftRow: It is the inverse of the ShiftRow transformation. The first Row is unchanged and the second row is cyclically right shifted once.
	InvSubnibbles: It is the inverse of the Subnibbles transformation, in which the inverse S- box is applied to each nibble of the State. The inverse S-box is presented in Table 2.

